Correlation Coding in Stochastic Neural Networks
نویسندگان
چکیده
Stimulus4ependent changes have been observed in the correlations between the spike trains of simultaneously-recorded pairs of neurons from the auditory cortex of marmosets even when there was no change in the average firing rates. A simple neural model can reproduce most of the characteristics of these experimental observations based on model neurons having leaky integration and fire-and-reset spikes and with Poisson-dis tributed, balanced input. The source of the synchrony in the model was common sensory input. The outputs of neurons in the model appear noisy (almost Poisson) owing to the stochastic nature of the input signal, but there is nevertheless a strong central peak in the correlation of the output spike trains. The experimental data and this simple model clearly demonstrate how even a noisy-looking spike train can convey basic3nformation about a sensory stimulus in the relative spike timing between neurons.
منابع مشابه
Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملOn the correlation dimension of recurrent neural networks
Recurrent sigmoidal neural networks with asymmetric weight matrices and recurrent neural networks with nonmonotone transfer functions can exhibit ongoing uctuations rather than settling into point attractors. It is, however, an open question if these uctuations are the sign of low dimensional chaos or if they can be considered as close to stochastic. We report on the calculation of the correlat...
متن کاملEstimation of Total Organic Carbon from well logs and seismic sections via neural network and ant colony optimization approach: a case study from the Mansuri oil field, SW Iran
In this paper, 2D seismic data and petrophysical logs of the Pabdeh Formation from four wells of the Mansuri oil field are utilized. ΔLog R method was used to generate a continuous TOC log from petrophysical data. The calculated TOC values by ΔLog R method, used for a multi-attribute seismic analysis. In this study, seismic inversion was performed based on neural networks algorithm and the resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997